UUCMS. No.

B.M.S. COLLEGE FOR WOMEN, AUTONOMOUS BENGALURU – 560004 SEMESTER END EXAMINATION – SEPT/OCT 2023

M.Sc. in Mathematics – 2nd Semester

NUMERICAL ANALYSIS –I

Course Code: MM205T Duration: 3 Hours

QP Code: 12005 Max. Marks: 70

Instructions: 1) All questions carry equal marks. 2) Answer any five full questions.

(a) Find the root of 2x - cos(x) - 3 = 0 with x₀ = π/2 correct to four decimal places using Aitken's Δ² method.
 (b) Prove or disprove that the Newton-Raphson method for finding a simple root of the equation f(x) = 0 has quadratic convergence whereas linearly for finding a multiple root.

(6+8)

- 2. (a) Find the smallest root of the equation xe^x = 1 using Ramanujan's method.
 (b) Extract a quadratic factor of the form px² + qx + 1 = 0 from x⁴ x³ + 6x² + 5x + 10 = 0 using Bairstow method. Take (p₀, q₀) = (1.14, 1.42). (7+7)
- 3. (a) Solve the following system of equations using Gauss elimination method.

$$2x + y + z = 103x + 2y + 3z = 18x + 4y + 9z - 16$$

(b) Explain the LU decomposition method for solving a system of algebraic equations AX = B.

(7+7)

4. (a) Establish the Gauss-Seidel iteration method for solving a system of algebraic equations AX = B in the matrix form.

(b) Solve the following system of equations using homotopy continuation method.

$$y\cos(xy) + 1 = 0$$

 $\sin(xy) + x - y = 0$

Take $(x_0, y_0) = (1,2)$ as the initial approximation.

(7+7)

5. (a) Find the Lagrange interpolating polynomial that fits the following data. Also find an approximation to f(x) at x = 3 using the polynomial.

x	0	1	2	4
f(x)) 2	5	12	62

(b) Find the error in representing a function by a Hermite interpolating polynomial when (x_i, y_i, y'_i) are given. (7+7)

6. (a) Find the least squares approximation of second degree that fits the following data.

x	-2	-1	0	1	2
f(x)	15	11	1	3	19

(b) Find the rational approximation $R_{2,3}$ for $\cos(\sqrt{x})$.

7. (a) Derive the Newton-Cotes methods and hence deduce the trapezoidal and Simpson's rule.

(b) Evaluate $\int_{-1}^{1} (1 - x^2)^{\frac{3}{2}} \cos(x) dx$ using Gauss-Chebyshev two- and three-point quadrature formulae. (9+5)

8. (a) Establish Gauss-Hermite two- and three-point quadrature formulae. Hence evaluate ∫[∞]_{-∞} e^{-x²}/_{1+x²} dx.
(b) Evaluate ∫¹₀ ∫²₀ (2xy)/(1+x²)(1+y²) dy dx using trapezoidal rule with h = k = 0.5.

(8+6)

(7+7)
