UUCMS. No. \square

B.M.S. COLLEGE FOR WOMEN, AUTONOMOUS
 BENGALURU - 560004
 SEMESTER END EXAMINATION - SEPT/OCT 2023

M.Sc. in Mathematics $\mathbf{- 2}^{\text {nd }}$ Semester

NUMERICAL ANALYSIS -I

Course Code: MM205T
Duration: 3 Hours

QP Code: 12005
Max. Marks: 70

Instructions: 1) All questions carry equal marks.

2) Answer any five full questions.
1. (a) Find the root of $2 x-\cos (x)-3=0$ with $x_{0}=\frac{\pi}{2}$ correct to four decimal places using Aitken's Δ^{2} method.
(b) Prove or disprove that the Newton-Raphson method for finding a simple root of the equation $f(x)=0$ has quadratic convergence whereas linearly for finding a multiple root.
2. (a) Find the smallest root of the equation $x e^{x}=1$ using Ramanujan's method.
(b) Extract a quadratic factor of the form $p x^{2}+q x+1=0$ from $x^{4}-x^{3}+6 x^{2}+5 x+10=$

0 using Bairstow method. Take $\left(p_{0}, q_{0}\right)=(1.14,1.42)$.
3. (a) Solve the following system of equations using Gauss elimination method.

$$
\begin{gathered}
2 x+y+z=10 \\
3 x+2 y+3 z=18 \\
x+4 y+9 z-16
\end{gathered}
$$

(b) Explain the $L U$ decomposition method for solving a system of algebraic equations $A X=B$.
4. (a) Establish the Gauss-Seidel iteration method for solving a system of algebraic equations $A X=$ B in the matrix form.
(b) Solve the following system of equations using homotopy continuation method.

$$
\begin{gather*}
y \cos (x y)+1=0 \\
\sin (x y)+x-y=0 \tag{7+7}
\end{gather*}
$$

Take $\left(x_{0}, y_{0}\right)=(1,2)$ as the initial approximation.
5. (a) Find the Lagrange interpolating polynomial that fits the following data. Also find an approximation to $f(x)$ at $x=3$ using the polynomial.

x	0	1	2	4
$f(x)$	2	5	12	62

(b) Find the error in representing a function by a Hermite interpolating polynomial when $\left(x_{i}, y_{i}, y_{i}^{\prime}\right)$ are given.
6. (a) Find the least squares approximation of second degree that fits the following data.

x	-2	-1	0	1	2
$f(x)$	15	11	1	3	19

(b) Find the rational approximation $R_{2,3}$ for $\cos (\sqrt{x})$.
7. (a) Derive the Newton-Cotes methods and hence deduce the trapezoidal and Simpson's rule.
(b) Evaluate $\int_{-1}^{1}\left(1-x^{2}\right)^{\frac{3}{2}} \cos (x) d x$ using Gauss-Chebyshev two- and three-point quadrature formulae.
8. (a) Establish Gauss-Hermite two- and three-point quadrature formulae. Hence evaluate $\int_{-\infty}^{\infty} \frac{e^{-x^{2}}}{1+x^{2}} d x$.
(b) Evaluate $\int_{0}^{1} \int_{0}^{2} \frac{2 x y}{\left(1+x^{2}\right)\left(1+y^{2}\right)} d y d x$ using trapezoidal rule with $h=k=0.5$.

